The Fundamental Theorem of Algebra

Theorem:
If $f(x)$ is a polynomial function of degree n with leading term $a_{n} x^{n}$, then f has precisely n linear factors of the form.
$f(x)=a_{n}\left(x-c_{1}\right)\left(x-c_{2}\right) \ldots\left(x-c_{n}\right)$ where $c_{1}, c_{2}, \ldots, c_{n}$ are complex numbers (not necessarily unique).

What does this theorem say about the polynomial $f(x)=x^{3}+2 x^{2}-2 x-4$?
Hint: $-2, \sqrt{2},-\sqrt{2}$ are the only zeros of f.

Definition:
If $(x-c)^{n}$ is a factor of a polynomial, then c is said to be a zero of the polynomial with multiplicity n. To determine the multiplicity of a zero of a function you need to know all of the factors of the function. The graph of a function can also give you insight into the zeros of a function and their multiplicities.

$$
f(x)=\frac{3}{4}(x+1)(x-2)^{2} ;
$$

-1 and 1 are zeros of f.
-1 is a zero of multiplicity 1 .
2 is a zero of f with multiplicity 2 .

$$
f(x)=(x+2)^{2}(x-1)^{3} ;
$$

-2 and 1 are zeros of f.
-2 is a zero of multiplicity 2 .
1 is a zero of f with multiplicity 3 .

Geometric Meaning of Multiplicity:

If c is a zero of multiplicity n then:

1) When n is odd the graph of the polynomial will cross the x-axis at $(c, 0)$.
2) When n is even the graph of the polynomial will touch the x axis at $(c, 0)$ but will not pass through.
3) When $n \geq 2$ then the graph of f will "flatten out" as it approaches $(c, 0)$

$$
\text { If } g(x)=2(x-1)(x+1)^{2}(x+2)^{3}
$$

Determine the degree of g.
Determine the y-intercept.
Determine the x-intercepts.
Where does the graph of g cross the x -axis?
Where does the graph of g "bounce off" of the x-axis?
For which x intercepts does the graph of g "flatten out"?
Use this information and the end-behaviors to draw a rough sketch of the graph of g.

Completely factor the polynomial function $P(x)=x^{4}-x^{3}+2 x^{2}-4 x-8$ and find all of the zeros of P.

Theorem:
If the imaginary number $a+b i$ is a zero of a polynomial then its conjugate $a-b i$ is also a zero.

If $5-3 i$ is a zero of the polynomial function $f(x)=x^{4}-6 x^{3}-11 x^{2}+186 x-170$, find all of the zeros of f and write f in factored form.

Construct a 5 th degree polynomial with a leading coefficient of 4 that has 2 as a zero with multiplicity of 2 and -3 is the only other zero.

